

Detecting and Alerting on Fault Conditions

in an Oracle Coherence Distributed

Caching System

Thomas Lubinski

SL Corporation

Corte Madera, CA

February 15, 2011

Abstract – Oracle Coherence is a powerful, yet complex,

distributing caching system used in many large mission-critical

applications. Fault conditions such as lack of available memory

or excessive network communication can lead to intolerable data

loss or even complete cluster failure. Detecting these dangerous

conditions using intelligent alerts as early as possible is critical to

preventing outages and ensuring high availability in such

systems. Techniques for achieving this using available JMX

monitoring data are presented in the context of commonly

encountered use cases.

I. INTRODUCTION

Oracle Coherence is an in-memory distributed data grid

and caching solution for applications and application servers.

Many large business applications – in industries as diverse as

financial services, risk management and on-line stores – use

Coherence services for storing and efficiently accessing large

volumes of data. However, as a powerful and complex

distributed system, it must be managed effectively in order

ensure its uptime and performance in critical applications.

The author of this article and SL Corporation have over

25 years of experience with monitoring and visualization
applications, with particular expertise in Java. The company’s

RTView Oracle Coherence Monitor product has been

specially adapted to deal with the large volumes of real-time

data produced by the JMX monitoring MBeans in Oracle

Coherence, and has features designed to generate intelligent

alerts based on regular monitoring of these metrics.

Several examples are presented in this paper to illustrate

how timely alerts can be distilled from the mass of data

produced in a large operational cluster. Several commonly

seen use cases are described to highlight the important metrics

and how they change as cluster operations result in conditions
that are unhealthy for the cluster.

This is not intended to be a definitive list of all possible

patterns; rather, it simply suggests an effective methodology

that can be used in addressing requirements for complex

monitoring applications.

II. THE COHERENCE VISION

A finely-tuned and smoothly operating Coherence cluster

is a wonder to behold. Dozens of networked computers

running hundreds of individual Coherence nodes are linked

together by an advanced internal network protocol to create a

huge high-performance in-memory virtual data storage bank,

with capacity seen as high as 500 gigabytes or more. Data that

are not contained in the fast caches are transparently swapped

in from even larger databases operating behind the scenes.

From the point of view of an application programmer,

data in this super cache are accessed using simple “get” and

“put” operations as if the cache were running on the user’s
single machine. This eliminates any need to worry about the

location of the data, or whether it is in a database or not. The

data are just “there” and readily available. Additionally,

Coherence provides a built-in backup mechanism ensuring

data integrity even if a few machines in the cluster go down or

become unavailable for a period of time.

This is a highly valuable concept, and has found use, for

example, in many large applications in financial services

where large amounts of trading information are processed to

keep a real-time view of current positions. Or, a large on-line

retail operation may use caches to manage product inventory

and availability in response to user purchases. Applications
such as these can be written and maintained much more easily

than before because of the much simpler data model.

For application programmers with access to a Coherence

data store, life is made much easier. The burden of managing

the location of the data is the responsibility of the Coherence

infrastructure, not the programmer as has been the case for

years.

Coherence accomplishes this with software that integrates

many individual “nodes” or JVMs, each of which manages a

small subset of the data stored in the large virtual cache, along

with backup copies of the data. Clusters can range from just a
few nodes up to many hundreds in some larger clusters. Each

node communicates with every other node in the cluster and

 2

complex algorithms are used to locate each piece of data in the

cluster, or on persistent backup storage such as a database.

This is all transparent to the user.

Figure 1 – A Coherence cluster consisting of many nodes

To the user, a Coherence cluster is like a “black box.”
There is no GUI or central console to show you the cluster

configuration, the data or the current state. You put data in and

take it out, but what goes on behind the scenes is very

complex. When it works, it is beautiful. However, when

something goes wrong, it can be quite difficult to determine

the source of problem and what to do to fix it. In fact, if

something goes wrong in your application, it can be difficult

to determine if the cluster is at fault at all.

III. MONITORING THE CLUSTER

Monitoring a Coherence cluster in real time is important

to ensuring its uptime, performance and reliability. As one

Coherence power user noted, “Coherence is a high
performance system. That means when it goes south, it goes

south quickly. If it runs out of memory, all the data is gone.”

While many infrastructure monitoring systems perform a

health check every five minutes, most users agree that

measurements in Coherence should be made more frequently

in order to have sufficient warning to correct problems before

they result in an outage. At SL, we usually suggest that

monitoring measurements be taken every 10-30 seconds.

Coherence exposes a great deal of detailed information

about its internal operation which can be used for alerting,

troubleshooting, performance analysis and capacity planning.
However, by its nature, monitoring Coherence can be quite

complex. A cluster containing 100 nodes and managing 20

uniquely named data stores, or caches, will have at a minimum

20 x 100, or 2,000 individual test points that must be

monitored. In fact, there are actually more like 10,000 test

points in a moderately sized cluster. Making sense of all this

data is a huge undertaking in itself.

In a previous paper, the author presented in-depth the

JMX monitoring MBeans that were available from Coherence,

and some techniques for optimizing the retrieval of this large

amount of data from a Coherence cluster. Additionally, this

paper discussed some of the information that was missing
from the Coherence MBeans and ways to augment the

monitoring using special configurations and other approaches.

Many developers are familiar with using JConsole or

other simple JMX management tools to look at individual

MBeans, or to perform some simple aggregations. However,

making sense of thousands of MBeans at once requires special

handling and products specifically designed to aggregate and

organize large amounts of data within context. For example, to
get a view of the amount of data going into and out of a single

cache in the cluster, MBean data from each of the nodes in the

cluster must be summed. One node by itself provides only a

very limited view. Additionally, there are often calculations

and deltas that must be performed on the various data tables in

order to extract useful information.

Figure 2 shows a breakdown of MBeans that are available

in a small cluster with 8 storage nodes running a couple of

services and about a dozen caches.

Figure 2 – Sample cluster MBeans by type in a small cluster

It is not practical to monitor or even troubleshoot the

cluster above using JConsole to examine one MBean at a time.

There needs to be an automated approach.

IV. DETECTING AND ALERTING ON PROBLEMS

Monitoring a Coherence cluster properly can provide

early warning of trouble. If one can quickly detect that

memory is running low, for example, additional storage nodes

could be allocated, increasing the total capacity before the

system runs out of memory. Monitoring systems based on

retrieving and analyzing data in a relational database typically
have too much latency to be effective.

The following is quick summary of metrics that are useful

for detecting problems in Coherence.

Table 1 – Some MBeans available from Coherence

MBean Relevant Information

Node
Location, CPU/Memory

Usage, Network Failures

Service
CPU Usage, Thread Usage,
Task Backlog, H/A Status

Cache
Object Count, Memory Size,

Total Gets / Hits / Misses

Storage Evictions, Index Data

Platform
JVM Memory Usage with

Garbage Collection detail

The sections that follow discuss ways that these metrics

can be used to proactively detect and alert on unhealthy
conditions.

 3

A. Endangered Data – Node and Machine Safety

Coherence provides one very important piece of data for

every service running in the cluster. This is the H/A Status (for

high-availability). This very simply indicates whether the data

in the caches running on a specific service are “SAFE” from

being lost if either a node or machine goes down.

Figure 3 – Simple table showing Cache Services status

The table above is from a monitoring display showing
summary information about each service in a cluster. The

name of each service is shown, along with its H/A Status, and

other information about the service such as number of objects,

number of nodes running the service, and number of

individual caches.

Note that the second service is MACHINE-SAFE. This

means that an entire machine could go down, but data in the

caches on that service may not be lost because there are

enough storage nodes so that backups can be distributed on the

reduced number of machines. However, MACHINE-SAFE

status is NOT an assurance that the cluster will have enough

memory to survive a machine failure. After a failure, primary
data, backup data, and index information will need to be

redistributed to the remaining machines. These machines need

to have enough available memory to store the new data.

The first service however, is only NODE-SAFE. This

means that the data are safe if a single node goes down, but if

an entire machine goes down, data will likely be lost. This

NODE-SAFE condition may be temporary because data

redistribution has not completed after a previous event. Or it

could be that there are not enough memory and machines to

distribute all primary and backup data on separate machines. If

a machine goes down, some data will likely be lost. A service
can also be ENDANGERED meaning that if any node goes

down, data will likely be lost, as the backup data cannot be

distributed effectively enough to ensure otherwise.

Since Coherence provides this information in a standard

MBean field, it is easy to detect one of these situations, and

inform a user that a problem has occurred. Typically, an alert

is generated, resulting in an email or text message to an

operator who could take corrective action. Sometimes an

SNMP trap is used to pass the alert to an in-house system

management console.

B. Departed Node – Node Leaving Cluster

In a large cluster, data may be safe even if more than a

single node goes down. This is because there is enough back

storage available on other nodes to distribute the load.

However, if any node goes down, it is usually indicative

of something starting to go wrong that may need to be

addressed immediately. For example, one node might go down

due to network problems or running out of memory. This

could tax the cluster, leading to a chain reaction where

additional nodes get overloaded and begin to go down

resulting in catastrophic failure. Detecting that the first node is

down could get an operator to start investigating the situation

and possibly take action that could prevent disaster.

Through version 3.5, Coherence does not provide any

automatic indication that a node has left the cluster (future

releases provide this as a JMX notification). The only way to

determine that a node has died is to regularly query all of the

Node MBeans from all nodes in the cluster, and compare the

list of MBeans returned with the list obtained in the most

recent query. If a node is missing, one can conclude that it

must have died during the previous interval.

There is a refinement to this alert that may be necessary.

The safety of data is dependent only on storage-enabled nodes,

so the alert should only be generated if one of these goes

down. In some applications, client or process nodes can come
and go at different times and an alert on the departure of one

of these is not useful. Thus, flexibility in the definition of the

alert is needed in a general-purpose monitoring system.

Detecting that a node has gone down is useful, but often

even this is too late. Ways to detect conditions that lead up to

nodes dying are discussed below.

C. Monitoring Memory Utilization

At a basic level, a Coherence cluster can be thought of as

one super data store. The capacity of that store is limited by

the amount of heap memory allocated across all the nodes in

the cluster. If objects are arbitrarily added to the cluster
without monitoring the utilization of that available memory,

the cluster can fill up resulting in fatal OutOfMemory errors

on some of the nodes, quickly cascading to complete cluster

collapse.

As a general rule, detecting problems in total cluster

memory utilization is a last line of defense. Section D below

will discuss ways to more granularly control capacity on

individually named caches.

A commonly seen type of monitoring display makes use

of a heatmap to show memory utilization within a cluster. In

the display below, each node is represented as a rectangle

where the size or area of the rectangle represents the heap
memory allocated to the node, and the color represents the

percent of the heap memory currently in use by the node.

Figure 4 – Heatmap showing memory utilization of all nodes

 4

Note that in this diagram, the process nodes are shown in

a separate grouping from the storage nodes. As with node

death, there is often a difference in the rules that apply to

process nodes and to storage nodes.

Monitoring node memory utilization at this level is not as

easy as it first looks. You cannot just assume that the memory
reported by the JVM is accurate. The task is complicated by

the effect of Java’s built-in garbage collection mechanism.

Two issues cloud the picture. First, the memory reported

as “used” by the JVM includes objects that have been deleted

but not yet removed (referred to as garbage), making it

difficult to tell exactly how much memory is really in use.

Second, when the JVM decides to perform a garbage

collection operation, all processing in that node stops

temporarily and can result in long delays in communication

with other nodes.

The trend chart below shows the memory utilization

reported by a sample node. The sawtooth shape of the trace
highlights the effect of garbage collection in this node.

Figure 5 – Chart showing single node memory utilization (blue)

Over a period of time, the reported memory utilization

increases regularly as objects are being added or removed in
this node. Note however, that after each garbage collection

event, the reported utilization drops down to about the same

level as before. This indicates that memory utilization is

essentially level and not fluctuating as much as reported.

The memory utilization heatmap shown in the earlier figure

thus is highly misleading. It appears that the nodes are varying

widely in their utilization. The reported memory depends

entirely on where in the sawtooth the query was made.

This makes it difficult to set a level on which to generate

an alert. In many cases, the JVM can let memory grow to a

very high percentage of what is allocated before performing
garbage collection. The only way to know for sure that there is

a problem is by using the level at the bottom of the sawtooth

as a trigger for the alert. When the bottom of the sawtooth

reaches a specified level, an alert could be generated, letting

users know of a growing problem in the cluster.

The JVM Platform Beans provide detailed information

about the behavior of the garbage collector in Java. Another

useful piece of information is the length of time that it takes to

perform a garbage collection. A very long garbage collection

timeframe can also be an indicator of another sort of problem.

If a cache consists of many small objects and the nodes are
allocated with large heap space, garbage collection can take a

very long time, resulting in communication delays. This is

another metric that can be used to generate an alert.

As a last line of defense, detecting and alerting on low

memory can be useful. However, it doesn’t provide a clue as

to where the memory is being used. Fortunately, Coherence

provides finer control over the individual caches of data that

are managed in a cluster.

D. Monitoring and Controlling Cache Capacity

Each cache in a cluster can be configured to have a limit

on how much data it can hold. Any attempt to put additional

objects into the cache will result in older objects being evicted.

This feature has a dual purpose. One, it puts a limit on the

amount of memory that can be utilized by a specific group of

objects. If all caches are configured in this way, then the

maximum utilization of memory can be controlled ahead of

time. Two, it also provides a mechanism that supports quick

access to frequently accessed data; if an object that is queried

is not in the cache, it is retrieved from a database and replaces

other objects in the cache.

The Cache MBeans return both current memory used in a
cache along with the memory limit. The metric is referred to

as “Units” because it can be configured to report in either

number of objects or in bytes. It is most useful when set to

bytes, as it represents the amount of memory consumed.

In the display below, a bar chart shows the amount of

memory used (Units) in a number of caches, along with the

High Units, or maximum. Some caches are near their capacity;

others not so.

Figure 6 – Bar chart showing Cache Units and High Units

By taking advantage of the High Units setting, the

available JVM heap space on each node can be segmented and

carefully controlled. Each cache can have a specific size limit,

which can then be monitored. Of course, not all applications

have use cases appropriate for this feature. Sometimes a

combination is useful. Some caches can be left to freely grow.

A typical use is where a cache is acting as a buffer

against a database. In this case it would be desired to allocate a

certain amount of space to act as a buffer. Once the space is

filled up, objects may be evicted. It might be desirable to
monitor and alert if too many evictions are occurring.

The heatmap below is an example of the how High Units

effectively partitions the available memory on a node.

 5

Figure 7 – Heatmap showing partitioning of caches on nodes

In this heatmap, each labeled node holds data for about a
dozen caches. The size of the box represents total capacity for

the cache, and the color indicates what percentage of that

capacity has been filled (dark blue means 100%).

E. Cluster Communication Failures

Coherence cluster members communicate through

Coherence TCMP, a UDP-based protocol. TCMP originally

stood for Tangosol Communication Management Protocol. It

combines the speed of UPD with the reliability of TCP.

Cluster node communication failures are a symptom in

nearly every cluster degradation situation that we have

encountered. For this reason, the TCMP publisher/receiver

failures are one of the most important metrics to track.

JMX provides the publisher/receiver success rate data per

cluster node, but this metric should be ignored because it’s

provided as an average since the cluster node started. It won’t

tell you if failures are occurring right now. The better way is

to calculate this metric in the monitoring system (as in

RTView), taking deltas from the total packets sent and

received over the last collection interval and then calculating

percentages. In degradation situations, high failure rates are

often seen, up to 40 and 50% packet failures.

What causes these failures? Interestingly, such failures

rarely result from network problems. Since multicast is used, a
lot of information is broadcast between the nodes. A common

scenario is when a storage node leaves the cluster. In this case,

the remaining nodes communicate with one another to

discover that a node has become unresponsive and must be

declared “dead.” Once it has, the backup data stored on other

nodes must then be changed to primary data; backup data must

be recreated and distributed among the other cluster nodes.

Several rounds of data redistribution can ensue. Typically, this

results in a short storm of network activity. As nodes are busy

processing the data, the packet publishers and receivers time

out and the result is a report of packet retransmissions (the
result of packet failure). If the original node then rejoins the

cluster, another round of data distribution is triggered. The

Quorum policy in Coherence 3.6 allows users to configure

clusters so as to minimize this redistribution.

Usually, when a node leaves the cluster, there is a short

burst of packet failures, lasting at most a few seconds while

the data are redistributed. Any alert defined against this data

must account for the short burst and not trigger a major alarm,

as the condition is usually temporary and the result of a node

going down for maintenance, as is common. In the same way,

it is normal to see communication failures during cluster

startup and during cache warm-up processes.

However, there is another case that is more important to
catch. This relates to garbage collection.

Depending on the pattern of activity in the cluster,

garbage collection may become a problem. If data are being

put into and removed from a cache quickly, garbage can be

accumulating. Other cluster operations will also produce

garbage such as entry processors, building and updating

indexes, write-behind queues, etc.

The JVM must respond to this by periodically collecting

the garbage and removing it. This process can be very time

consuming. A lot of technology has gone into optimizing this

and providing options that behave differently for different use

cases.

However, when garbage collection is occurring, all other

activity in the nodes stops. This means that packet transfers

are not processed in a timely manner, resulting in a significant

increase in communication failures.

Thus, monitoring of communication failures is a critical

step in preventing cluster failures. Typically, the pattern is that

communication failures are seen, followed by an increase in

post-GC memory levels because the garbage collector is not

doing an adequate job and garbage is not being removed. This

eventually results in the death of that node when it runs out of

memory. The result of this is a redistribution of data, meaning
even more packet loss and delays, with a result that the entire

cluster comes down. Again, the quorum policy in Coherence

3.6 is designed to reduce this churn and also allow the cluster

to freeze rather than continue in a downward spiral.

Effectively monitoring for communication failures means

that there needs to be a setable duration, so that transient

innocuous redistributions do not generate an alert. A longer

period of communication failures above a certain level is a

sure indication of a problem brewing in the cluster.

Shown below is a typical communication pattern seen

when garbage collection is causing too many packet failures.

In this case, a trigger level could be set to generate an alert
which could then be investigated and corrected.

Figure 8 – Garbage collection (blue) causing packet loss spikes

Monitoring of communication failures can provides a

warning, but by the time communication failures have gone

 6

up, it may already be negatively affecting cluster performance.

Another way to detect this type of problem is to monitor the

data access in the cluster by observing the distribution of

requests across the storage and processing nodes.

F. Hot Keys, Excessive Requests on One Node

An interesting case commonly seen revolves around the
problem of “hot keys.” Coherence is very good at dealing with

data access patterns where data requests are distributed (for

the most part) evenly across a data set. Sometimes however,

the nature of the data means that certain objects may be

accessed more often than others in a particular time interval.

Access to the same data over and over again means that

the one node that is holding the official copy of the object is

going to be accessed repeatedly. The node will only be able to

service one request at a time (more if additional threads are

allocated, but it is still limited). This means that nodes will

have to wait for their requests to be serviced. If a node is

perceived as being non-responsive for too long a period of
time, it may be declared “dead“ by other members of the

cluster. The node is then kicked out of the cluster.

Once a node is ejected, data redistribution occurs, but the

new node that contains the data has to start responding to the

requests and eventually it may be kicked out as well.

The chart below shows a history of the CPU level on all

process nodes (top) and storage nodes (bottom) in a cluster.

About halfway through the period, one node starts to show a

high number of requests and thus high CPU levels. This is due

to the fact that all the process nodes are making requests for

the same piece of data which is stored on the one node.

Figure 9 – History of CPU level for process and storage nodes

Often in such a scenario there will be a number of other

indicators besides CPU level. For example, network

communication failure rate will typically rise. If this cluster

were more heavily loaded, it is likely that the node would

eventually be ejected from the cluster.

Coherence unfortunately does not provide any way to
determine the number of requests on a specific key. Of course,

an application can be instrumented with JMX to provide this

type of information. While it is a good practice that

monitoring be designed into applications, it is unfortunately

usually an afterthought.

V. SUMMARY

It is important in Coherence to monitor and understand

chronic conditions that threaten the integrity of Coherence’s

clustering protocol and threaten the integrity of the cluster

itself. Cluster failure can be catastrophic because failure of an

in-memory system results in loss of all data. As one user
observed, it is like a car crash without any damaged cars left at

the scene of the accident to understand what happened.

By monitoring critical operational metrics like TCMP

publisher/receiver failures, garage collection pause time, and

post GC available memory, most impending failures may be

avoided. Also by collecting and persisting monitoring metrics,

data will be available for post mortem analysis if something

should go wrong.

REFERENCES

[1] Oracle – Oracle Coherence Knowledge Base Home, October 2010,
http://wiki.tangosol.com/display/COH/Oracle+Coherence+Knowledge+

Base+Home

[2] Oracle - Coherence Planning: From Proof of Concept to Production, An
Oracle White Paper, November 2008

[3] Oracle - Coherence 3.6 Documentation, Oracle Technology Network,
http://www.oracle.com/technetwork/middleware/coherence/documentati

on/index.html

[4] Lubinski, Thomas – Monitoring Oracle Coherence using JMX:
Challenges and Limitations, Technical Papers, www.sl.com, SL

Corporation, 7 October 2009

[5] Lubinski, Thomas – Practical Considerations When Instrumenting
Applications with JMX, Information Week, July 2008

http://www.sl.com/

