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Abstract – Oracle Coherence is a powerful, yet complex, 

distributing caching system used in many large mission-critical 

applications. Fault conditions such as lack of available memory 

or excessive network communication can lead to intolerable data 

loss or even complete cluster failure. Detecting these dangerous 

conditions using intelligent alerts as early as possible is critical to 

preventing outages and ensuring high availability in such 

systems. Techniques for achieving this using available JMX 

monitoring data are presented in the context of commonly 

encountered use cases. 

I. INTRODUCTION 

Oracle Coherence is an in-memory distributed data grid 

and caching solution for applications and application servers. 

Many large business applications – in industries as diverse as 

financial services, risk management and on-line stores – use 

Coherence services for storing and efficiently accessing large 

volumes of data. However, as a powerful and complex 

distributed system, it must be managed effectively in order 

ensure its uptime and performance in critical applications. 

The author of this article and SL Corporation have over 

25 years of experience with monitoring and visualization 
applications, with particular expertise in Java. The company’s 

RTView Oracle Coherence Monitor product has been 

specially adapted to deal with the large volumes of real-time 

data produced by the JMX monitoring MBeans in Oracle 

Coherence, and has features designed to generate intelligent 

alerts based on regular monitoring of these metrics. 

Several examples are presented in this paper to illustrate 

how timely alerts can be distilled from the mass of data 

produced in a large operational cluster. Several commonly 

seen use cases are described to highlight the important metrics 

and how they change as cluster operations result in conditions 
that are unhealthy for the cluster. 

This is not intended to be a definitive list of all possible 

patterns; rather, it simply suggests an effective methodology 

that can be used in addressing requirements for complex 

monitoring applications. 

II. THE COHERENCE VISION 

A finely-tuned and smoothly operating Coherence cluster 

is a wonder to behold. Dozens of networked computers 

running hundreds of individual Coherence nodes are linked 

together by an advanced internal network protocol to create a 

huge high-performance in-memory virtual data storage bank, 

with capacity seen as high as 500 gigabytes or more. Data that 

are not contained in the fast caches are transparently swapped 

in from even larger databases operating behind the scenes. 

From the point of view of an application programmer, 

data in this super cache are accessed using simple “get” and 

“put” operations as if the cache were running on the user’s 
single machine. This eliminates any need to worry about the 

location of the data, or whether it is in a database or not. The 

data are just “there” and readily available. Additionally, 

Coherence provides a built-in backup mechanism ensuring 

data integrity even if a few machines in the cluster go down or 

become unavailable for a period of time. 

This is a highly valuable concept, and has found use, for 

example, in many large applications in financial services 

where large amounts of trading information are processed to 

keep a real-time view of current positions. Or, a large on-line 

retail operation may use caches to manage product inventory 

and availability in response to user purchases. Applications 
such as these can be written and maintained much more easily 

than before because of the much simpler data model. 

For application programmers with access to a Coherence 

data store, life is made much easier. The burden of managing 

the location of the data is the responsibility of the Coherence 

infrastructure, not the programmer as has been the case for 

years. 

Coherence accomplishes this with software that integrates 

many individual “nodes” or JVMs, each of which manages a 

small subset of the data stored in the large virtual cache, along 

with backup copies of the data. Clusters can range from just a 
few nodes up to many hundreds in some larger clusters. Each 

node communicates with every other node in the cluster and 
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complex algorithms are used to locate each piece of data in the 

cluster, or on persistent backup storage such as a database. 

This is all transparent to the user. 

 

Figure 1 – A Coherence cluster consisting of many nodes 

To the user, a Coherence cluster is like a “black box.” 
There is no GUI or central console to show you the cluster 

configuration, the data or the current state. You put data in and 

take it out, but what goes on behind the scenes is very 

complex. When it works, it is beautiful. However, when 

something goes wrong, it can be quite difficult to determine 

the source of problem and what to do to fix it. In fact, if 

something goes wrong in your application, it can be difficult 

to determine if the cluster is at fault at all. 

III. MONITORING THE CLUSTER 

Monitoring a Coherence cluster in real time is important 

to ensuring its uptime, performance and reliability. As one 

Coherence power user noted, “Coherence is a high 
performance system. That means when it goes south, it goes 

south quickly. If it runs out of memory, all the data is gone.” 

While many infrastructure monitoring systems perform a 

health check every five minutes, most users agree that 

measurements in Coherence should be made more frequently 

in order to have sufficient warning to correct problems before 

they result in an outage. At SL, we usually suggest that 

monitoring measurements be taken every 10-30 seconds.  

Coherence exposes a great deal of detailed information 

about its internal operation which can be used for alerting, 

troubleshooting, performance analysis and capacity planning. 
However, by its nature, monitoring Coherence can be quite 

complex. A cluster containing 100 nodes and managing 20 

uniquely named data stores, or caches, will have at a minimum 

20 x 100, or 2,000 individual test points that must be 

monitored. In fact, there are actually more like 10,000 test 

points in a moderately sized cluster. Making sense of all this 

data is a huge undertaking in itself. 

In a previous paper, the author presented in-depth the 

JMX monitoring MBeans that were available from Coherence, 

and some techniques for optimizing the retrieval of this large 

amount of data from a Coherence cluster. Additionally, this 

paper discussed some of the information that was missing 
from the Coherence MBeans and ways to augment the 

monitoring using special configurations and other approaches. 

Many developers are familiar with using JConsole or 

other simple JMX management tools to look at individual 

MBeans, or to perform some simple aggregations. However, 

making sense of thousands of MBeans at once requires special 

handling and products specifically designed to aggregate and 

organize large amounts of data within context. For example, to 
get a view of the amount of data going into and out of a single 

cache in the cluster, MBean data from each of the nodes in the 

cluster must be summed. One node by itself provides only a 

very limited view. Additionally, there are often calculations 

and deltas that must be performed on the various data tables in 

order to extract useful information. 

Figure 2 shows a breakdown of MBeans that are available 

in a small cluster with 8 storage nodes running a couple of 

services and about a dozen caches. 

 

Figure 2 – Sample cluster MBeans by type in a small cluster 

It is not practical to monitor or even troubleshoot the 

cluster above using JConsole to examine one MBean at a time. 

There needs to be an automated approach. 

IV. DETECTING AND ALERTING ON PROBLEMS 

Monitoring a Coherence cluster properly can provide 

early warning of trouble. If one can quickly detect that 

memory is running low, for example, additional storage nodes 

could be allocated, increasing the total capacity before the 

system runs out of memory. Monitoring systems based on 

retrieving and analyzing data in a relational database typically 
have too much latency to be effective. 

The following is quick summary of metrics that are useful 

for detecting problems in Coherence. 

Table 1 – Some MBeans available from Coherence  

MBean Relevant Information 

Node 
Location, CPU/Memory 

Usage, Network Failures 

Service 
CPU Usage, Thread Usage, 
Task Backlog, H/A Status 

Cache 
Object Count, Memory Size, 

Total Gets / Hits / Misses 

Storage Evictions, Index Data 

Platform 
JVM Memory Usage with 

Garbage Collection detail 

The sections that follow discuss ways that these metrics 

can be used to proactively detect and alert on unhealthy 
conditions. 
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A. Endangered Data – Node and Machine Safety 

Coherence provides one very important piece of data for 

every service running in the cluster. This is the H/A Status (for 

high-availability). This very simply indicates whether the data 

in the caches running on a specific service are “SAFE” from 

being lost if either a node or machine goes down. 

 

Figure 3 – Simple table showing Cache Services status 

The table above is from a monitoring display showing 
summary information about each service in a cluster. The 

name of each service is shown, along with its H/A Status, and 

other information about the service such as number of objects, 

number of nodes running the service, and number of 

individual caches. 

Note that the second service is MACHINE-SAFE. This 

means that an entire machine could go down, but data in the 

caches on that service may not be lost because there are 

enough storage nodes so that backups can be distributed on the 

reduced number of machines. However, MACHINE-SAFE 

status is NOT an assurance that the cluster will have enough 

memory to survive a machine failure. After a failure, primary 
data, backup data, and index information will need to be 

redistributed to the remaining machines. These machines need 

to have enough available memory to store the new data.  

The first service however, is only NODE-SAFE. This 

means that the data are safe if a single node goes down, but if 

an entire machine goes down, data will likely be lost. This 

NODE-SAFE condition may be temporary because data 

redistribution has not completed after a previous event. Or it 

could be that there are not enough memory and machines to 

distribute all primary and backup data on separate machines. If 

a machine goes down, some data will likely be lost. A service 
can also be ENDANGERED meaning that if any node goes 

down, data will likely be lost, as the backup data cannot be 

distributed effectively enough to ensure otherwise. 

Since Coherence provides this information in a standard 

MBean field, it is easy to detect one of these situations, and 

inform a user that a problem has occurred. Typically, an alert 

is generated, resulting in an email or text message to an 

operator who could take corrective action. Sometimes an 

SNMP trap is used to pass the alert to an in-house system 

management console. 

B. Departed Node – Node Leaving Cluster 

In a large cluster, data may be safe even if more than a 

single node goes down. This is because there is enough back 

storage available on other nodes to distribute the load. 

However, if any node goes down, it is usually indicative 

of something starting to go wrong that may need to be 

addressed immediately. For example, one node might go down 

due to network problems or running out of memory. This 

could tax the cluster, leading to a chain reaction where 

additional nodes get overloaded and begin to go down 

resulting in catastrophic failure. Detecting that the first node is 

down could get an operator to start investigating the situation 

and possibly take action that could prevent disaster. 

Through version 3.5, Coherence does not provide any 

automatic indication that a node has left the cluster (future 

releases provide this as a JMX notification). The only way to 

determine that a node has died is to regularly query all of the 

Node MBeans from all nodes in the cluster, and compare the 

list of MBeans returned with the list obtained in the most 

recent query. If a node is missing, one can conclude that it 

must have died during the previous interval. 

There is a refinement to this alert that may be necessary. 

The safety of data is dependent only on storage-enabled nodes, 

so the alert should only be generated if one of these goes 

down. In some applications, client or process nodes can come 
and go at different times and an alert on the departure of one 

of these is not useful. Thus, flexibility in the definition of the 

alert is needed in a general-purpose monitoring system. 

Detecting that a node has gone down is useful, but often 

even this is too late. Ways to detect conditions that lead up to 

nodes dying are discussed below. 

C. Monitoring Memory Utilization 

At a basic level, a Coherence cluster can be thought of as 

one super data store. The capacity of that store is limited by 

the amount of heap memory allocated across all the nodes in 

the cluster. If objects are arbitrarily added to the cluster 
without monitoring the utilization of that available memory, 

the cluster can fill up resulting in fatal OutOfMemory errors 

on some of the nodes, quickly cascading to complete cluster 

collapse. 

As a general rule, detecting problems in total cluster 

memory utilization is a last line of defense. Section D below 

will discuss ways to more granularly control capacity on 

individually named caches.  

A commonly seen type of monitoring display makes use 

of a heatmap to show memory utilization within a cluster. In 

the display below, each node is represented as a rectangle 

where the size or area of the rectangle represents the heap 
memory allocated to the node, and the color represents the 

percent of the heap memory currently in use by the node. 

 

Figure 4 – Heatmap showing memory utilization of all nodes 
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Note that in this diagram, the process nodes are shown in 

a separate grouping from the storage nodes. As with node 

death, there is often a difference in the rules that apply to 

process nodes and to storage nodes.  

Monitoring node memory utilization at this level is not as 

easy as it first looks. You cannot just assume that the memory 
reported by the JVM is accurate. The task is complicated by 

the effect of Java’s built-in garbage collection mechanism.  

Two issues cloud the picture. First, the memory reported 

as “used” by the JVM includes objects that have been deleted 

but not yet removed (referred to as garbage), making it 

difficult to tell exactly how much memory is really in use. 

Second, when the JVM decides to perform a garbage 

collection operation, all processing in that node stops 

temporarily and can result in long delays in communication 

with other nodes. 

The trend chart below shows the memory utilization 

reported by a sample node. The sawtooth shape of the trace 
highlights the effect of garbage collection in this node. 

 

Figure 5 – Chart showing single node memory utilization (blue) 

Over a period of time, the reported memory utilization 

increases regularly as objects are being added or removed in 
this node. Note however, that after each garbage collection 

event, the reported utilization drops down to about the same 

level as before. This indicates that memory utilization is 

essentially level and not fluctuating as much as reported. 

The memory utilization heatmap shown in the earlier figure 

thus is highly misleading. It appears that the nodes are varying 

widely in their utilization. The reported memory depends 

entirely on where in the sawtooth the query was made. 

This makes it difficult to set a level on which to generate 

an alert. In many cases, the JVM can let memory grow to a 

very high percentage of what is allocated before performing 
garbage collection. The only way to know for sure that there is 

a problem is by using the level at the bottom of the sawtooth 

as a trigger for the alert. When the bottom of the sawtooth 

reaches a specified level, an alert could be generated, letting 

users know of a growing problem in the cluster. 

The JVM Platform Beans provide detailed information 

about the behavior of the garbage collector in Java. Another 

useful piece of information is the length of time that it takes to 

perform a garbage collection. A very long garbage collection 

timeframe can also be an indicator of another sort of problem. 

If a cache consists of many small objects and the nodes are 
allocated with large heap space, garbage collection can take a 

very long time, resulting in communication delays. This is 

another metric that can be used to generate an alert. 

As a last line of defense, detecting and alerting on low 

memory can be useful. However, it doesn’t provide a clue as 

to where the memory is being used. Fortunately, Coherence 

provides finer control over the individual caches of data that 

are managed in a cluster. 

D. Monitoring and Controlling Cache Capacity 

Each cache in a cluster can be configured to have a limit 

on how much data it can hold. Any attempt to put additional 

objects into the cache will result in older objects being evicted. 

This feature has a dual purpose. One, it puts a limit on the 

amount of memory that can be utilized by a specific group of 

objects. If all caches are configured in this way, then the 

maximum utilization of memory can be controlled ahead of 

time. Two, it also provides a mechanism that supports quick 

access to frequently accessed data; if an object that is queried 

is not in the cache, it is retrieved from a database and replaces 

other objects in the cache. 

The Cache MBeans return both current memory used in a 
cache along with the memory limit. The metric is referred to 

as “Units” because it can be configured to report in either 

number of objects or in bytes. It is most useful when set to 

bytes, as it represents the amount of memory consumed. 

In the display below, a bar chart shows the amount of 

memory used (Units) in a number of caches, along with the 

High Units, or maximum. Some caches are near their capacity; 

others not so. 

 

Figure 6 – Bar chart showing Cache Units and High Units  

By taking advantage of the High Units setting, the 

available JVM heap space on each node can be segmented and 

carefully controlled. Each cache can have a specific size limit, 

which can then be monitored. Of course, not all applications 

have use cases appropriate for this feature. Sometimes a 

combination is useful. Some caches can be left to freely grow. 

A typical use is where a cache is acting as a buffer 

against a database. In this case it would be desired to allocate a 

certain amount of space to act as a buffer. Once the space is 

filled up, objects may be evicted. It might be desirable to 
monitor and alert if too many evictions are occurring. 

The heatmap below is an example of the how High Units 

effectively partitions the available memory on a node. 



 5 

 

Figure 7 – Heatmap showing partitioning of caches on nodes 

In this heatmap, each labeled node holds data for about a 
dozen caches. The size of the box represents total capacity for 

the cache, and the color indicates what percentage of that 

capacity has been filled (dark blue means 100%). 

E.    Cluster Communication Failures 

Coherence cluster members communicate through 

Coherence TCMP, a UDP-based protocol. TCMP originally 

stood for Tangosol Communication Management Protocol. It 

combines the speed of UPD with the reliability of TCP. 

Cluster node communication failures are a symptom in 

nearly every cluster degradation situation that we have 

encountered. For this reason, the TCMP publisher/receiver 

failures are one of the most important metrics to track. 

JMX provides the publisher/receiver success rate data per 

cluster node, but this metric should be ignored because it’s 

provided as an average since the cluster node started. It won’t 

tell you if failures are occurring right now. The better way is 

to calculate this metric in the monitoring system (as in 

RTView), taking deltas from the total packets sent and 

received over the last collection interval and then calculating 

percentages. In degradation situations, high failure rates are 

often seen, up to 40 and 50% packet failures. 

What causes these failures? Interestingly, such failures 

rarely result from network problems. Since multicast is used, a 
lot of information is broadcast between the nodes. A common 

scenario is when a storage node leaves the cluster. In this case, 

the remaining nodes communicate with one another to 

discover that a node has become unresponsive and must be 

declared “dead.” Once it has, the backup data stored on other 

nodes must then be changed to primary data; backup data must 

be recreated and distributed among the other cluster nodes. 

Several rounds of data redistribution can ensue. Typically, this 

results in a short storm of network activity. As nodes are busy 

processing the data, the packet publishers and receivers time 

out and the result is a report of packet retransmissions (the 
result of packet failure). If the original node then rejoins the 

cluster, another round of data distribution is triggered. The 

Quorum policy in Coherence 3.6 allows users to configure 

clusters so as to minimize this redistribution. 

Usually, when a node leaves the cluster, there is a short 

burst of packet failures, lasting at most a few seconds while 

the data are redistributed. Any alert defined against this data 

must account for the short burst and not trigger a major alarm, 

as the condition is usually temporary and the result of a node 

going down for maintenance, as is common. In the same way, 

it is normal to see communication failures during cluster 

startup and during cache warm-up processes. 

However, there is another case that is more important to 
catch. This relates to garbage collection. 

Depending on the pattern of activity in the cluster, 

garbage collection may become a problem. If data are being 

put into and removed from a cache quickly, garbage can be 

accumulating. Other cluster operations will also produce 

garbage such as entry processors, building and updating 

indexes, write-behind queues, etc. 

The JVM must respond to this by periodically collecting 

the garbage and removing it. This process can be very time 

consuming. A lot of technology has gone into optimizing this 

and providing options that behave differently for different use 

cases.  

However, when garbage collection is occurring, all other 

activity in the nodes stops. This means that packet transfers 

are not processed in a timely manner, resulting in a significant 

increase in communication failures. 

Thus, monitoring of communication failures is a critical 

step in preventing cluster failures. Typically, the pattern is that 

communication failures are seen, followed by an increase in 

post-GC memory levels because the garbage collector is not 

doing an adequate job and garbage is not being removed. This 

eventually results in the death of that node when it runs out of 

memory. The result of this is a redistribution of data, meaning 
even more packet loss and delays, with a result that the entire 

cluster comes down. Again, the quorum policy in Coherence 

3.6 is designed to reduce this churn and also allow the cluster 

to freeze rather than continue in a downward spiral. 

Effectively monitoring for communication failures means 

that there needs to be a setable duration, so that transient 

innocuous redistributions do not generate an alert. A longer 

period of communication failures above a certain level is a 

sure indication of a problem brewing in the cluster. 

Shown below is a typical communication pattern seen 

when garbage collection is causing too many packet failures. 

In this case, a trigger level could be set to generate an alert 
which could then be investigated and corrected.  

 

Figure 8 – Garbage collection (blue) causing packet loss spikes 

Monitoring of communication failures can provides a 

warning, but by the time communication failures have gone 
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up, it may already be negatively affecting cluster performance. 

Another way to detect this type of problem is to monitor the 

data access in the cluster by observing the distribution of 

requests across the storage and processing nodes. 

F. Hot Keys, Excessive Requests on One Node 

An interesting case commonly seen revolves around the 
problem of “hot keys.” Coherence is very good at dealing with 

data access patterns where data requests are distributed (for 

the most part) evenly across a data set. Sometimes however, 

the nature of the data means that certain objects may be 

accessed more often than others in a particular time interval. 

Access to the same data over and over again means that 

the one node that is holding the official copy of the object is 

going to be accessed repeatedly. The node will only be able to 

service one request at a time (more if additional threads are 

allocated, but it is still limited). This means that nodes will 

have to wait for their requests to be serviced. If a node is 

perceived as being non-responsive for too long a period of 
time, it may be declared “dead“ by other members of the 

cluster. The node is then kicked out of the cluster. 

Once a node is ejected, data redistribution occurs, but the 

new node that contains the data has to start responding to the 

requests and eventually it may be kicked out as well. 

The chart below shows a history of the CPU level on all 

process nodes (top) and storage nodes (bottom) in a cluster. 

About halfway through the period, one node starts to show a 

high number of requests and thus high CPU levels. This is due 

to the fact that all the process nodes are making requests for 

the same piece of data which is stored on the one node. 

 

Figure 9 – History of CPU level for process and storage nodes 

Often in such a scenario there will be a number of other 

indicators besides CPU level. For example, network 

communication failure rate will typically rise. If this cluster 

were more heavily loaded, it is likely that the node would 

eventually be ejected from the cluster. 

Coherence unfortunately does not provide any way to 
determine the number of requests on a specific key. Of course, 

an application can be instrumented with JMX to provide this 

type of information. While it is a good practice that 

monitoring be designed into applications, it is unfortunately 

usually an afterthought. 

 

V. SUMMARY 

It is important in Coherence to monitor and understand 

chronic conditions that threaten the integrity of Coherence’s 

clustering protocol and threaten the integrity of the cluster 

itself. Cluster failure can be catastrophic because failure of an 

in-memory system results in loss of all data. As one user 
observed, it is like a car crash without any damaged cars left at 

the scene of the accident to understand what happened.  

By monitoring critical operational metrics like TCMP 

publisher/receiver failures, garage collection pause time, and 

post GC available memory, most impending failures may be 

avoided. Also by collecting and persisting monitoring metrics, 

data will be available for post mortem analysis if something 

should go wrong. 
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